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metric methods and by ab initio calculations. The initial 
structure of the protonated dimers seems to be that of a pro­
ton-bridged conformation, in which the proton and the two 
carbonyl oxygen atom lone pairs form a "three-center bond". 
The symmetric dimers, in which the proton is equidistant from 
both oxygen atoms, are more stable toward dissociation to 
reactants than the asymmetric protonated dimers, in which the 
proton is further from one of the oxygen atoms forming a 
weaker O-H bond. The tendency of the neutral reactants to 
participate in the formation of protonated dimers was related 
to their proton affinity. Thus, in order for the acidic fluorides 
to form asymmetric protonated dimers with formaldehyde, a 
large excess of the former is needed. Electron deformation 
density maps were calculated. These also indicate that the 
three-center bond is strongest in the symmetric protonated 
dimers, while in the asymmetric ones, especially in (H2CO-
F2CO)H+, there is a tendency toward dissociation to proton­
ated formaldehyde and a neutral fluoride molecule. Finally, 
the reactions rates were correlated with the exothermicities 
of the association reactions. 
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Supplementary Material Available: Schematic conformations and 
the ST0-4G charges (condensed to atoms) of protonated formalde­
hyde dimers (Figure Sl), the electronic difference density map of a 
square planar protonated formaldehyde dimer in the molecular plane 
(Figure S2), the charge distribution, condensed to atoms, in proton-
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Sir: r 

The facile synthesis and further elaboration of functional- s 
ized bicyclo[5.3.0]decanes constitute an objective of consid- c 
erable dimension in synthesis as suggested, in part, by the t 
number and complexity of natural product families charac- p 
terized by this subunit (e.g., pseudoguaiane, guaiane, daph- a 
nane, tigliane, ingenane, asebotoxin).2 The significance of this g 
objective is further amplified by the potent and varied bio- s 
logical activity and, in particular, significant antitumor3 or r 
cocarcinogenic activity4 exhibited by various constituents of d 
this series. In connection with these considerations, we describe r 
herein an efficient synthesis of (i)-damsinic acid (1) and r 
(i)-confertin (2)5 which embodies a general methodology of b 
potentially broad applicability to the synthesis of the above S 
skeleta. 1 

bridged dimers, calculated with the 4-3IG basis set (Figure S3), the 
electronic difference density map of the proton-bridged asymmetric 
dimer (H2CO-HFCO)H+ in the molecular plane (Figure S4), the 
electronic difference map of a protonated formyl fluoride in the mo­
lecular plane (Figure S5), and the electronic difference density map 
of the protonated asymmetric dimer (H2CO-F2CO)H+ in the mo­
lecular plane (Figure S6) (6 pages). Ordering information is given 
on any current masthead page. 
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vVith respect to synthesis design, a convergent route to the 
previously noted families was expected to be derivable from 
methodology which would allow for the annelation of a 
seven-membered ring onto a preformed five-membered ring. 
Our studies on the development of such methodology in the 
specific context of pseudoguaiane synthesis were guided by two 
considerations which bear on the generality of an approach to 
this family. Specifically, the A-ring functionality of most 
pseudoguaianes is characterized by or could be derived from 
a C-4 carbonyl and the stereochemistry of those pseudo­
guaianes characterized by a-oriented hydrogens at B-ring 
stereocenters could be efficiently established by a single-step 
hydrogenation of unsaturated intermediates6 such as 5 or 6 
derivable from a common precursor such as dienone 7. With 
respect to these considerations, we previously described a 
method for the preparation of divinylcyclopropanes which can 
be utilized to efficiently effect the requisite annelation (e.g., 
Scheme I; 8 + 9a (and/or 1Oa) — 11a (and/or 12a) - • 13a, 
72% overall).7-8 However the simple but crucial extension of 
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this chemistry in the methyl series (R = CH3)9 was frustrated 
by the formation of triene 14 along with only minor amounts 
of desired product (13b) when ketones l ib and 12b were py-
rolyzed under a variety of conditions. The amount of 13b 
formed in these pyrolyses was approximately equivalent to the 
amount of ds-divinylcyclopropane starting material (12b).9'10 

Thus, while both 11a and 12a lead to annelated product (13a), 
a process implicating thermal epimerization of 11a to 12a, the 
corresponding epimerization of l ib to 12b is precluded by the 
more facile rearrangement of l ib to 14 involving a homo 
[l,5]-sigmatropic hydrogen shift.11 The stereospecific prep­
aration of 12b would circumvent this problem; however, we 
have found that it can be more conveniently resolved by pho-
toepimerization of lib. Thus, irradiation (>290 nm) of the 
llb-12b mixture (4:1, respectively) provided a mixture en-
Scheme I 
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a s e r i e s : R = H 

b s e r i e s : R = CH 3 
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X = OCHjCH2O 
( ) = Transformations in parentheses are performed in sequence 

in one reaction vessel. 

a (a) PCC, CH2Cl,; (b) LiMe3SiCHCO2Et; (c) H2, PtO2, EtOH; (d) 
LDA; (e) Me2NCH2

+I", THF; (f) MeI, MeOH; (g) 10% aqueous 
NaOH-MeOH (1:1), room temperature; (h) 2 N HCl; (i) H2, 5% 
Pd/alumina, PhH; (j) H2, PtO2, EtOH, NaOAc; (k) H2O2, NaOH; (1) 
Na(EtO)2POCHCO2Et, PhH; (m) 10% aqueous H2SO4, MeCOMe, 
room temperature; (n) 30% aqueous NaOH, THF; (o) H2, Pd/C, 
EtOH; (p) NaHCO3, H2O; (q) 10% aqueous H2SO4, MeCOMe, 50 0C. 

riched in 12b which upon selective pyrolysis (98 0C) gave 13b 
and unreacted lib. Repetition of this sequence or simultaneous 
irradiation and thermolysis (98 0C) of the llb-12b mixture 
gave 13b in 80-90% yield. 

In order to allow for the selective introduction of B-ring 
appendages (Scheme II), ketone 13b was converted into ketal 
15 which upon treatment with pyridinium chlorochromate 
(PCC)12'13 gave dienones 7 and 16 (70%) in the ratio of 9:1, 
respectively. The complementary selectivity (7/16 = V3, 
~65%) was obtained using CrO3-Py2 or tert-butyl chromate 
as oxidants. The chemoselectivity of PCC is noteworthy in that, 
unlike other chromium-based oxidants, PCC does not effect 
oxidation of isolated double bonds12 or, as we have found in our 
studies, more reactive systems such as diphenylmethane and 
allylbertzene. 

For the synthesis of damsinic acid, dienone 7, available in 
>40% overall yield from 8, was first converted14 into triene 
ester 5 (81%) which upon hydrogenation afforded the expected 
hexahydro product (3,37%, mp 33-34 0C), in accord with the 
previously discussed rationale, along with a tetrahydro deriv­
ative with a C-1,C-10 double bond (55%). Since the latter 
could not be stereospeeifically converted into 3 under these or 
other hydrogenation conditions, thereby suggesting that these 
products arise from competitive modes of reduction, an al­
ternative approach to ester 3 was investigated. To this end, 
reduction of dienone 7 was found to give with >92% stereo­
selectivity ketone 17 (Y = O, mp 75.5-76.5 0C)15 which was 
converted into ester 17 (Y = CHCO2Et). Hydrogenation of 
this ester afforded ester 3 with 90% stereoselectivity, thereby 
providing for its efficient (~70%) elaboration from dienone 
7. The stereochemistry assigned to ester 3 was established by 
its conversion16 into (±)-damsinic acid (1, mp 99-100 
0C).17 

In the extension of this general strategy to the synthesis of 
confertin (2), introduction of the pro C-8 oxygen was accom­
plished by reaction of dienone 7 with basic hydrogen peroxide 
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which afforded a single epoxy ketone 18 (Y = O, 80%, mp 
84.5-85.5 0C (a), mp 122-123 0C W)). Olefination of this 
ketone in ethanol gave the E- and Z-unsaturated esters 18 (Y 
= CHC02Et) in a ratio of 3:1, respectively, whereas in benzene 
the Z isomer was obtained with >95% stereoselectivity, a result 
which, if similar approach control occurs in both solvents, 
would be consistent with a more facile collapse of erythro- and 
//j/w-alkoxyphosphonates to starting materials relative to 
products in going from a polar protic to nonpolar aprotic sol­
vent.18 On exposure to acid, this Z isomer (18, Y = CHCOaEt) 
gave a mixture of hydroxylactones19 which when treated with 
base provided triene lactone 6 (mp 111-113 0C). Hydroge-
nation15 of this lactone (6) afforded lactone 4 (mp 100-102 
0C; 57% overall from 18, Y = O) with >80% stereoselectivity 
(i.e., 95% stereoselectivity per center). This stereochemical 
assignment was subsequently confirmed by conversion16 of 
lactone 4 into (i)-confertin (2, mp 112-113.8 0C).20 

In summary, the above strategy allows for the stereoselective 
synthesis of (±)-damsinic acid (1) and (i)-confertin (2) in 
~20% (11 steps) and 5-10% (12 steps) overall yield, respec­
tively, via a readily available and potentially general pseudo-
guaiane precursor, dienone 7. Moreover, the methodology used 
in this approach should be readily adaptable to other objectives 
in the previously noted families. Further studies are in prog­
ress. 
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Unusual Substituent and Multiplicity Effects in 
Carbenic Ring Expansion and Substitution Reactions 
of Benzenes with 3-Diazo-2,5-diphenylpyitole 

Sir: 

Reactions of carbenes with benzenoid derivatives have had 
limited study.1 We now report that (1) thermolysis and pho­
tolysis of 3-diazo-2,5-diphenylpyrrole (1) result in ring ex­
pansion of benzene (2a) and benzenes 2b,c containing elec­
tron-withdrawing substituents to give' l,3-diphenyl-27f-cy-
cloocta[c]pyrroles 3a-c", a new heterocyclic system, whereas 
benzenes 2d,e containing electron-donor groups undergo di­
rected substitution to yield 2,3,5-triarylpyrroles 4a-c' and (2) 
photosensitization of 1 in 2a and 2b leads to aromatic substi­
tution (4a,d) rather than ring expansion. The unusual sub-

' ' v ^ V 

1 2 

2a , Z = H 

2 b , Z = C N 

C6H5 ^ C6H5 
H 
3 

H 

4a ,Z = H 

2 0 , Z = N O 2 3 a , Z = H 4b, Z = D - O C H 3 

2Cl1Z = OCH3 3 ib-£",Z = 4,5and6-CN 4 0 V 1 Z = OOn(Iq-CH3 

2e,Z = CH3 3c-£",Z = 4,5and6-N02 4 d , Z = o - C N 

stituent and multiplicity effects in ring expansion and substi­
tution of 2 by 1 contribute to the theory and the synthetic ap­
plicability of reactions of carbenes with aromatic sub­
strates.1 

Thermolysis (175 0C) or photolysis2 of 1 in benzene (2a, 560 
equiv) yields l,3-diphenyl-2i/-cycloocta[c]pyrrole (3a, 69%, 
mp 196.5-197.5 0C, yellow). Similarly, 1 ring expands ben-
zonitrile (2b) to 4-, 5-, and 6-cyano-l,3-diphenyl-2F-cy-
clooctafc] pyrroles 3b-b" (47 and 36%).3 Aromatic substitution 
of 2b is not detectable. Further, 1 converts nitrobenzene (2c) 
at 170 0C to 4-, 5-, and 6-nitro-l,3-diphenyl-2#-cyclooc-
ta[c]pyrroles 3c-c" (32%).3-4 Pyrroles 3a, 3b-b", and 3c-c" 
are assigned from elemental analyses, mass and IR spectra, 
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